A Congruence Connecting Latin Rectangles and Partial Orthomorphisms

نویسندگان

  • Douglas Stones
  • Ian M. Wanless
چکیده

Let χ(n, d) be the number of injective maps σ : S → Zn \ {0} such that (a) S ⊂ Zn of cardinality |S | = n − d, (b) σ(i) , i for all i ∈ S and (c) σ(i) − i . σ( j) − j (mod n) whenever i , j. Let Rk,n be the number of k × n reduced Latin rectangles. We show that Rk,n ≡ χ(p, n − p) (n − p)!(n − p − 1)!2 (n − k)! Rk−p,n−p (mod p) when p is a prime and n ≥ k ≥ p+1. This allows us to calculate explicit congruences for Rn,n for n ≤ 31. We show that χ(n, d) is divisible by d2/ gcd(n, d) when 1 ≤ d < n and establish several formulae for χ(n, n − a). In particular, for each a there exists μa such that, on each congruence class modulo μa, χ(n, n − a) is determined by a polynomial in n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Latin Squares based on Cyclotomic Orthomorphisms

Atomic latin squares have indivisible structure which mimics that of the cyclic groups of prime order. They are related to perfect 1-factorisations of complete bipartite graphs. Only one example of an atomic latin square of a composite order (namely 27) was previously known. We show that this one example can be generated by an established method of constructing latin squares using cyclotomic or...

متن کامل

Cycle Structures of Orthomorphisms Extending Partial Orthomorphisms of Boolean Groups

A partial orthomorphism of a group G (with additive notation) is an injection π : S → G for some S ⊆ G such that π(x) − x 6= π(y) − y for all distinct x, y ∈ S. We refer to |S| as the size of π, and if S = G, then π is an orthomorphism. Despite receiving a fair amount of attention in the research literature, many basic questions remain concerning the number of orthomorphisms of a given group, a...

متن کامل

Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method

The current paper deals with the enumeration and classification of the set SORr,n of self-orthogonal r × r partial Latin rectangles based on n symbols. These combinatorial objects are identified with the independent sets of a Hamming graph and with the zeros of a radical zero-dimensional ideal of polynomials, whose reduced Gröbner basis and Hilbert series can be computed to determine explicitly...

متن کامل

Transversals in Latin Squares

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...

متن کامل

Transversals in Latin Squares: A Survey

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008